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For Metropolis Monte Carlo simulations in statistical physics, efficient, easy-
to-implement, and unbiased statistical estimators of thermodynamic properties
are based on the transition dynamics. Using an Ising model example, we
demonstrate (problem-specific) variance reductions compared to conventional
histogram estimators. A proof of variance reduction in a microstate limit is
presented.
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1. BACKGROUND

Monte Carlo computer simulation has proven extremely useful for problems
in statistical physics and chemistry. As originally suggested(1) by Metropolis
et al., a Markov chain of system microstates can be simulated whose limiting
relative frequencies are equal to their Boltzmann probabilities. Thus, thermo-
dynamic properties of the system can be estimated by simple averaging; that
is, by collecting histograms. The use of histogram estimators has remained
prevalent despite the many improvements to the original Metropolis algo-
rithm over the years, such as non-Boltzmann sampling methods for slowly
relaxing systems.

It may be surprising to many Monte Carlo practitioners to learn that
there are more efficient statistical estimators for physical properties than
those obtained from histograms. In this paper, we examine the statistical
properties of new estimators(2) based on the transition dynamics of the
system, using canonical transition probabilities (CTPs) estimated from the
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Monte Carlo simulation. The prospect of variance reduction arises because
the estimators of the transition dynamics use microstate-level information
that has smaller variance than the microstate-level information used in
histogram estimators.

The CTP method is easy to implement, amounting to the insertion of
a simple bookkeeping step into the Metropolis algorithm. This bookkeep-
ing is compatible with any Metropolis proposal mechanism, any definition
of macrostate labels, and any importance weights guiding the simulation.
The use of CTPs is easily extended(2) to other scenarios, such as those
involving partitioning of the state space and�or adaptive updating of
importance weights. Extrapolation of system properties to temperatures
other than that of the simulation is also possible. Because the bookkeeping
can simply be accumulated over adaptive runs, the adaptive capabilities of
CTPs are appealing, especially for slowly relaxing systems, where it is
crucial to adapt to good importance weights. Even in static simulations
using Boltzmann importance weights, however, CTPs provide reduced
variance, as we show in this paper.

The extent of variance reduction is problem-specific, depending on
such issues as the thermodynamic quantity of interest, the system size, the
temperature, and the implementation details for the Metropolis algorithm
(e.g., the mechanism used to generate proposed moves and the importance
weights used to guide the random walk). We present an Ising model example
where the histogram estimators have variance roughly 1.25 times that
achieved by CTP estimators of transition dynamics, i.e., it would require
running the simulation 250 longer to obtain the same precision using
histogram estimators. While such gains are not spectacular, they are
applicable to most Metropolis Monte Carlo simulations in statistical
physics and chemistry, and are available at essentially no cost.

An outline of this paper is as follows. First, we review the Metropolis
algorithm and standard histogram estimators. Second, we discuss alter-
native estimators based on histograms. Third, we discuss estimators based
on macrostate transition dynamics, which should reduce variance relative
to either of the histogram estimators. (This argument uses a proof of
variance reduction in the microstate limit, details of which are presented in
an appendix and generalized to include the use of arbitrary importance
weights guiding the random walk.) Finally, we empirically demonstrate
variance reduction in an Ising model example.

2. STANDARD ESTIMATES

To establish notation, consider a system with a set 0 of possible
states, where microstate s # 0 has Boltzmann probability
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?s=
e&;Es

� t # 0 e&;Et
=

e&;Es

Z
(1)

Here, ; denotes the inverse temperature of the system, Es the energy
associated with microstate s, and Z the partition function. In the Ising
model, for example, a microstate s is a configuration of \ spins, [_a], over
a set of lattice points, and the energy Es is the sum of nearest neighbor
interactions, i.e., Es=&�(a, b) # n.n. _a_b .

Most applications involve only the Boltzmann probabilities of macro-
states, from which thermodynamic properties can be derived. Let S denote
the macrostate corresponding to a set of microstates s sharing some
characteristic of interest. The probability 6S for macrostate S is

6S= :
s # S

?s (2)

Henceforth, we use lower-case letters to denote microstates and upper-case
letters for macrostates. For example, in the Ising model, the macrostate of
interest could denote magnetization, where microstate s is in macrostate S
if its magnetization, Ms=�a _ (s)

a , equals MS . A thermodynamic quantity
of interest derived from this macrostate is the magnetic susceptibility

/ B :
S

6SM 2
S (3)

The Metropolis algorithm produces a Markov chain which, upon
equilibration, visits microstates with relative sampling frequencies ?s and
macrostates with relative frequencies 6S . Each step of the Metropolis algo-
rithm consists of three parts:

g1 Given that the system is in microstate s # S, a move to another
microstate t # T is proposed by some mechanism. We denote

qs, t=Prob(state t is proposed | system is in state s). (4)

To simplify the presentation, symmetry qs, t=qt, s is assumed
here, though this is not strictly necessary.(3)

g2 Given that the system is in microstate s # S and a move to
microstate t # T has been proposed, the probability that the
system moves to state t is

rs, t=Prob(move to state t | system is in state s and state
t is proposed)

=min[1, ?t �?s]. (5)

If the system does not move to the proposed state t, then it
remains in state s.
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The third part of each Metropolis step consists of the bookkeeping
used to estimate system properties of interest.

The commonly used histogram estimator counts the number of times
that the chain visits each macrostate S. That is, upon equilibration of the
Markov chain, the Metropolis algorithm invokes the bookkeeping step

g3a If the system moved to state t # T, increment the histogram count
HT=HT+1; if the system remained in state s # S, increment
HS=HS+1.

The histogram estimator of the macrostate probability 6S is

6� (H )
S =

HS

N
(6)

where N denotes the number of equilibrated Metropolis steps in the
simulation. Note: Throughout this paper, the symbol `` ^ '' refers to a Monte
Carlo estimate, which is to be contrasted with the actual quantity being
estimated. For our Ising example, this histogram estimate could be sub-
stituted into Eq. (3) to estimate the susceptibility. The average magnetiza-
tion is obtained similarly. This procedure is entirely equivalent to averaging
the time series of observed magnetizations MS . Correlation properties of
the stationary time series would then be used for error propagation.(4)

An alternative, less well-known, histogram estimator(5) for the
Metropolis algorithm uses the empirical transition probabilities (ETPs)
between macrostates and detailed balance. The corresponding bookkeeping
step creates a histogram of the transitions that the system makes from one
macrostate to another:

g3b If the system moved to state t # T, increment the count
HS, T=HS, T+1; if the system remained in state s # S, increment
HS, S=HS, S+1.

The bookkeeping for ETPs could, in principle, involve a large two-
dimensional array. For many problems, however, much simplification
occurs. In the Ising model with a single-spin-flip proposal mechanism, for
example, the [HS, T ] array is banded with three bands (if magnetization
defines macrostates) or five bands (if energy defines macrostates). Even in
cases where the full [HS, T ] array can be populated, the bookkeeping can
be simplified by accumulating only the counts for macrostate pairs [S, T ]
in the primary bands, relegating the low counts [HS, T ] from other bands
into the diagonal [HS, S ] terms. This approach is tantamount to using only
the detailed balance equations from the primary bands in the estimation of
macrostate probabilities. The reduced storage from using only the primary
bands trades off with a loss of information, but this loss is slight when the
counts in the other bands are small.
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Note that the [HS, T ] transition histograms contains all of the infor-
mation from the standard histogram method, because

HS=:
T

HS, T

Equilibrated transition probabilities [PS, T] for the Markov chain are
estimated using ETPs by

P� (ETP)
S, T =

HS, T

�U HS, U
=

HS, T

HS
(7)

ETP-based system properties can be derived by using the estimates
[P� (ETP)

S, T ] together with detailed balance,

6S PS, T=6TPT, S (8)

This derivation involves taking logarithms in Eq. (8) to improve numerical
stability, substituting the estimate P� (ETP)

S, T for PS, T , rearranging terms, and
producing a set of equations in the logged ETP-based estimates of the
[6S]:

ln P� (ETP)
T, S &ln P� (ETP)

S, T =ln 6� (ETP)
S &ln 6� (ETP)

T (9)

for all (S, T ) for which the detailed balance, Eq. (8), is not of the form
0=0 (for some pairs (S, T ), PS, T=0 because the proposal mechanism
does not allow such one-step transitions). This set of linear equations can
be solved��a simple approach being to use standard software routines(6)

for least squares to minimize

:
S, T

([ln P� (ETP)
T, S &ln P� (ETP)

S, T ]&[ln 6� (ETP)
S &ln 6� (ETP)

T ])2

and get ETP-based estimates 6� (ETP)
S .

Any variance reduction through the use of ETPs relative to the
standard histogram approach arises from more efficient use of the ``data''
[HS, T ] from the simulation. As shown in the appendix, however, when the
observed [HS, T ] approximately satisfy an empirical balance condition
HS, T=HT, S for all S{T, then the variance reduction relative to the
standard histogram method is minimal. In certain problems, such as the
Ising model with magnetization defining the macrostates and single-spin-
flip proposal mechanisms, approximate empirical balance always holds and
ETP-based estimates are virtually identical to those for the standard
histogram method.
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3. TRANSITION DYNAMICS BASED ON ACTUAL TRANSITION
PROBABILITIES

Improvement on histogram methods is possible with the CTP
approach(2) that we now describe. This approach invokes the bookkeeping
step

g3c Whether or not the system moved to state t # T, increment
CS, T=CS, T+rs, t as well as CS, S=CS, S+[1&rs, t]; (note: if
S=T, this means that the updating is CS, S=CS, S+1).

The term rs, t , defined in Eq. (5), is the actual transition probability of a
move from state s to state t given that such a move has been proposed.
This bookkeeping step g3c increments an array CS, T by rs, t and 1&rs, t , in
contrast to histogram methods that increment by zeroes and ones. As may
be intuitively obvious, the use of actual probabilities can be a significant
source of variance reduction.

The corresponding estimate of the canonical transition probability,
PS, T , arising from the CS, T array is similar to Eq. (7),

P� (CTP)
S, T =

CS, T

�U CS, U
=

CS, T

HS
(10)

The Boltzmann macrostate probabilities are obtained from the estimated
transition probabilities through solution of the detailed balance equations
(8), just as for the ETP method.

In order to compare the relative efficiency of the CTP method to the
histogram approaches, consider the microstate-level contributors hs, t (the
number of transitions made from microstate s to microstate t) to the
macrostate-level HS, T array

HS, T= :
s # S

:
t # T

hs, t

and the corresponding contributor cs, t to the CS, T array

CS, T= :
s # S

:
t # T

cs, t

As with denoting system states, the lower-case hs, t and cs, t is used to dis-
tinguish microstate-level quantities from macrostate-level quantities. The
expected values

E[cs, t]=E[hs, t]=?sqs, trs, t for all microstates s{t
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Loosely speaking, this says that cs, t and the corresponding histogram
count hs, t of the observed transitions from s to t are estimating the same
thing, but in different ways. The histogram hs, t counts the number of times
that the system actually moved from s to t, while cs, t counts the number
of times that a move from s to t was proposed and then multiplies by the
acceptance probability for the proposal. The simulated Markov chain is the
same in both cases, but the bookkeeping involved is different.

In the appendix, we prove that the direct use of acceptance
probabilities rs, t leads to reduced variance:

Var(cs, t)�Var(hs, t) for all microstates s{t (11)

Equality holds in Eq. (11) if and only if rs, t=1 (then, proposed moves
from s to t are always accepted, and cs, t#hs, t) or when qs, t=0 (then,
moves from s to t are never proposed, and cs, t#hs, t#0).

The variance inequality, Eq. (11), implies that the building blocks of
the CTP estimators are uniformly better than those of histogram methods.
Nonetheless, this result falls somewhat short of showing that the macro-
state density-of-states estimates based on the [CS, T ] are superior to those
based on [HS, T ], which is necessary to complete the proof that the
approach described herein is superior to histogram methods. Such a con-
jecture is plausible, however. Extending the variance inequality to the
macrostate level is difficult because macrostate transitions do not have
Markovian behavior, so that the proof given in the appendix does not
apply.

There is a similarity between the CTP approach and two other
approaches to the general problem: Transition Matrix Monte Carlo
Reweighting(7) and Broad Histogram Monte Carlo.(8) In those approaches,
two-dimensional arrays are also stored, which accumulate at each visited
state the total numbers of single-spin-flip transitions to lower and higher
energies. This information is then used to estimate the density of states,
using ideas similar to those in converting CTPs. No theoretical variance
reduction is shown for either of those approaches relative to the standard
approach; indeed, any empirical reduction in variance per step of the ran-
dom walk must be interpreted in light of the increased computational work
required to assess all possible transitions from each visited state.

To illustrate the use of CTPs, we evaluated the variance reduction in
a 30_30 Ising system slightly above the critical temperature, simulating for
;=0.42 and using the single-spin-flip proposal mechanism. This Ising
system was chosen to be large enough to provide meaningful results, yet
small enough to allow for the extensive simulation required to conclusively
demonstrate variance reduction. Separate calculations were carried out for
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magnetic susceptibility (using magnetization to define the macrostates) and
specific heat (using energy to define macrostates). In each case, system
properties were determined from the same simulation data using the various
bookkeeping methods.

Figure 1 displays the results from 500 simulations for magnetic suscep-
tibility, each simulation carried out for 5_106 sweeps of the system (a ``sweep''
of the 30_30 Ising system being equal to 900 Metropolis steps). Plotted is
the average squared error as a function of iteration number, where each
iteration denotes 10,000 sweeps. That is, a plotted point is the sample
variance of the 500 simulated values. Superimposed on the results is a
smooth curve, equal to a fitted constant times 1�N, which can be used to
quantify variance reduction. Upon comparing the curves for CTPs and for
the standard histogram method (as is shown in Appendix A.2, the standard
histogram method is essentially identical to the ETP approach in this case),
the variance difference is 250. In other words, determining magnetic sus-
ceptibility by the standard approach would require running the simulation
1.25 times as long in order to achieve the same statistical accuracy.

Fig. 1. Comparison of Mean Squared Error for histogram and CTP estimates of magnetic
susceptibility in a 30_30 Ising model simulated at ;=0.42. Relative efficiency of CTP
estimator is 1.25.
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Another set of 500 simulations was carried out using energy to define
system macrostates, comparing the approaches in their determination of
the system's specific heat. Figure 2 displays the squared errors between the
simulated estimates and the known specific heat.(9) The variance reduction
from CTPs in this case is modest, roughly 6�80 as compared with the
standard histogram and ETP methods. This reduction is considerably less
than that for magnetic susceptibility, illustrating the problem-specific
nature of the phenomenon.

In evaluating variance reductions, computational effort must be con-
sidered. Implementation of CTPs involves additional storage relative to the
standard histogram approach (CS, T being a two-dimensional array) as well
as the solution of the detailed balance equations, Eq. (9). For many
proposal mechanisms qs, t , however, the two-dimensional array reduces to
a band system, so that storage needs are modest. Moreover, the balance
equations must be solved only once (at the end of a simulation), and
efficient software exists for this purpose. In our simulations, for example,
a CPU profiling indicated that less than 0.10 of the overall runtime was

Fig. 2. Comparison of Mean Squared Error for histogram, ETP, and CTP estimates of
specific heat in a 30_30 Ising model simulated at ;=0.42. Relative efficiency of CTP
estimator is 1.06 and 1.08 versus the histogram and ETP methods, respectively.
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devoted to solving the detailed balance equations and producing estimates
of system properties.

4. CONCLUSION

We have described improved statistical estimators based on Monte
Carlo transition dynamics, which are widely applicable to diverse simula-
tions in statistical physics and chemistry. While we have not (yet) proven
theoretical variance reduction in the most general case, we have shown that
the microstate building blocks for CTP estimators have reduced variance
compared with the building blocks of the standard histogram estimators;
moreover, this is true for non-Boltzmann importance-weighted simulations
as well as for Boltzmann sampling (see the appendix). We have also
demonstrated variance reduction empirically with an Ising model example.

That variance is reduced through use of CTPs offers great potential for
adaptive Monte Carlo. Consider the case where multiple iterations of an
adaptive algorithm learn desirable importance weights. With each iteration,
variance is reduced as per the results of this paper. And because each itera-
tion of the learning algorithm builds on its predecessors, variance reduc-
tions accrue in the vein of compound interest. Moreover, when energy is
used to define the macrostates, either alone or in conjunction with another
variable, Boltzmann transition probabilities can be simply accumulated
over all iterations of the adaptive algorithm and used to estimate the den-
sity of states (see Appendix A.3).

The bookkeeping required by CTPs is simple and easy to implement.
This bookkeeping is compatible with any Metropolis proposal mechanism,
any definition of macrostate labels, and any importance weights guiding
the simulation. Moreover, extrapolation of system properties to tem-
peratures other than that of the simulation is also possible. These features,
in addition to the reduced variance provided, make CTPs a useful tool in
Monte Carlo simulation.

APPENDIX

A.1. Importance Sampling

For generality, the variance reduction proof is carried out for all
importance-weighted Metropolis simulations, treating Boltzmann sampling
as a special case. In order to do this, a brief review of importance sampling
is needed.
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The Boltzmann probability for microstate s # 0 is now denoted (com-
pare with Eq. (1))

?s(09 )=
e&;Es

� t # 0 e&;Et
=

e&;Es

Z

and that for macrostate S is (compare with Eq. (2))

6S(09 )= :
s # S

?s(09 )

where the notation 09 is explained shortly. An importance-weighted
Metropolis simulation produces a Markov chain which, upon equilibra-
tion, visits microstates with relative sampling frequencies ?s('� ) B e'S?s(09 )
and macrostates with relative frequencies 6S('� ) B e'S6S(09 ). Here, the vec-
tor of weights '� defining the importance sampling depends only on the
macrostate labels, i.e., 's#'S for all s # S. For example, the choice '� =09
corresponds to Boltzmann importance weights, while the choice 'S=
&ln 6S(09 ) corresponds to a multicanonical approach, (10) where the sampling
frequencies for all macrostates are equal.

The acceptance portion of the Metropolis algorithm for importance-
weighted random walks is

g2$ Given that the system is in microstate s # S and a move to
microstate t # T has been proposed, the probability that the
system moves to state t is (compare with Eq. (5)):

rs, t('� )=Prob(move to state t | system is in state s and state t is
proposed)

=min[1, e'T?t(09 )�e'S?s(09 )]

=min[1, e&;(Et&Es)+('T&'S)]

If the system does not move to the proposed state t, then it
remains in state s.

For the standard histogram method, the number of times HS that the
chain is in S is proportional to the macrostate probability 6S('� ) B
e's6S(09 ); that is, histogram estimates are (compare with Eq. (6))

6� (H)
S ('� )=

HS

N
(12)
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Histogram estimates of Boltzmann probabilities are obtained by inverting
the importance sampling relation 6S('� ) B e'S6S(09 ) to give

6� (H )
S (09 )=

e&'S6� (H )
S ('� )

�T e&'T6� (H )
T ('� )

=
e&'SHS

�T e&'THT
(13)

For the ETP approach, the solution for equilibrated transition
probabilities [PS, T ('� )] for the importance-weighted Markov chain are
estimated using ETP's by (compare with Eq. (7)):

P� (ETP)
S, T ('� )=

HS, T

�U HS, U
=

HS, T

HS
(14)

ETP-based system properties can be derived by using the estimates
[P� (ETP)

S, T ('� )] together with the detailed balance, (compare with Eq. (8))

6S('� ) PS, T ('� )=6T ('� ) PT, S('� ) (15)

This derivation involves solving a set of equations in the logged ETP-based
estimates of the [6S('� )] (compare with Eq. (9)):

ln P� (ETP)
T, S ('� )&ln P� (ETP)

S, T ('� )=ln 6� (ETP)
S ('� )&ln 6� (ETP)

T ('� ) (16)

for all (S, T ) for which the detailed balance, Eq. (15), is not of the form
0=0. This set of linear equations can be solved as in the Boltzmann
case to get ETP-based estimates 6� (ETP)

S ('� ). The estimated macrostate
probabilities are converted to estimated Boltzmann probabilities 6� (ETP)

S (09 )
as in Eq. (13).

Under importance sampling, transition dynamics correspond to the
bookkeeping step

g3c Whether or not the system moved to state t # T, increment
C$S, T=C$S, T+rs, t('� ) as well as C$S, S=C$S, S+[1&rs, t('� )]
(note: if S=T, this means that the updating is C$S, S=C$S, S+1).

The term rs, t('� ) in this bookkeeping step is defined in Metropolis
stage g2$ and is the actual transition probability of a move from state s to
state t given that such a move has been proposed. Further, the notation C$
distinguishes C$S, T from the CS, T in g3c referenced to the canonical weights
'� =09 .

A.2. ETP and Standard Histogram Estimates

In this section, we show that when the counts HS, T satisfy an empiri-
cal detailed balance condition that ETP estimates are identical to those
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from the usual histogram method. A corollary of this result is that if
empirical detailed balance is nearly satisfied, then the ETP and standard
histogram methods give nearly identical results.

Recall that the detailed balance condition is given by Eq. (15),

6S('� ) PS, T ('� )=6T ('� ) PT, S('� ) for all macrostate pairs (S, T )

Viewed somewhat differently, this is a statement about the expected values
of the transition counts HS, T of the Markov chain:

E(HS, T)=E(HT, S) for all macrostate pairs (S, T )

Suppose that the empirical version of this were to hold in a particular
simulation of N equilibrated steps, i.e.,

HS, T=HT, S for all macrostate pairs (S, T ) (17)

Admittedly, the probability of all counts [HS, T ] satisfying these equalities
exactly is very small for many proposal mechanisms, but the purpose here
is to examine the relation of ETP estimates to those from the standard
histogram approach.

Using empirical detailed balance,

ln \P� (ETP)
T, S ('� )

P� (ETP)
S, T ('� )+=ln \HT, S�HT

HS, T �HS +
=ln(HS �HT)

=ln HS&ln HT (18)

Substituting Eq. (18) into the set of linear equations (16) to be solved then
gives

ln \P� (ETP)
T, S ('� )

P� (ETP)
S, T ('� )+=ln HS&ln HT=ln 6� (ETP)

S ('� )&ln 6� (ETP)
T ('� ) (19)

Thus, when empirical detailed balance holds for all macrostate pairs
(S, T ), the (exact) solution to the linear equations (19) is easily seen to be

6� (ETP)
S ('� )=

HS

N
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which is the same set of estimates as obtained from the standard histogram
method, Eq. (12).

In other words, the difference between ETP estimates and those from
the usual histogram approach reflects the extent to which empirical
detailed balance in Eq. (17) is not satisfied.

For a certain class of problems, approximate empirical detailed
balance holds, almost by definition. As an extreme example, consider the
Ising model with magnetization defining the macrostates. When the
proposal mechanism qs, t is equivalent to selecting a single lattice point and
flipping its spin, the system moves at most one macrostate per Metropolis
step. Note that this implies that for all adjacent macrostate pairs (S, T ),
either HS, T=HT, S or HS, T=HT, S\1. It is impossible for HS, T to be
more than 1 from HT, S because any time that the random walk moves
from S to T, it can only return again to state S via state T��recall that the
system can move no more than one state per step in this case.

Because the empirical detailed balance condition is ``almost'' satisfied
for this problem (to within \1 in a Markov chain whose length N is
usually many thousands of steps), Eq. (17) ``almost'' holds and ETP-based
estimates are virtually identical to those for the standard histogram
method. Any variance reduction through use of ETP's is obviously minimal
here, and not worth the computational overhead of maintaining an HS, T

array.

A.3. Bookkeeping in Canonical Scale

We now show that when the system Hamiltonian is used to define the
macrostates, either alone or in conjunction with another relevant variable,
that carrying out the bookkeeping g3c with the canonical acceptance
probabilities rs, t(09 ) gives results identical to those for the bookkeeping g3c$

using acceptance probabilities rs, t('� ) referenced to the weights '� guiding
the simulation. Thus, canonical estimates are identical to those based on
the transition dynamics [C$S, T ] of the simulation. This simplification
allows for accumulating the canonical array CS, T over several simulation
runs having (possibly) different weights '� , thereby taking advantage of
parallel computing and making the approach compatible with adaptive
methods, while preserving reduced variance.

The set of equations to be solved in an importance-weighted simula-
tion, Eq. (16), can be written in matrix form as

y� '� =X%9 '� (20)
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where the components of y� '� have the generic form of logged ratios of tran-
sition probability estimates (see Eqs. (9) and (10)),

ln(P� (CTP$)
T, S ('� )�P� (CTP$)

S, T ('� ))

The components of %9 '� are the unnormalized logged macrostate probabil-
ities ln 6S('� ), and the design matrix X has rows containing a single +1,
a single &1, and all other entries equal to zero.

Now consider the canonical bookkeeping step g3c described earlier:

CS, T=CS, T+rs, t(09 ) and CS, S=CS, S+[1&rs, t(09 )] (21)

At the end of the importance-weighted simulation, let nS, T denote the
number of Metropolis steps with the system in macrostate S with macro-
state T proposed. The canonical counting array satisfies

CS, T=nS, T rs, t(09 ) (22)

where rs, t(09 )=min[1, ?t(09 )�?s(09 )] is the acceptance probability for the
proposed move were Boltzmann sampling to be used and were the system
in state s with state t proposed. When energy is used to define the macro-
states, the acceptance probability rs, t(09 ) is the same for all s # S and t # T,
allowing for the simplification in Eq. (22).

Note that the Boltzmann acceptance probabilities satisfy the relation

rt, s(09 )

rs, t(09 )
=

min[1, ?s(09 )�?t(09 )]
min[1, ?t(09 )�?s(09 )]

=
?s(09 )

?t(09 )

=\e'T

e'S+\e'S?s(09 )

e'T?t(09 )+
=\e'T

e'S+ min[1, ?s('� )�?t('� )]
min[1, ?t('� )�?s('� )]

=\e'T

e'S+\rt, s('� )
rs, t('� )+ (23)

Moreover, �T CS, T=�T C$S, T=HS , which implies

P� (CTP)
S, T (09 )=nS, Trs, t(09 )�HS
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Using this relation and Eq. (23),

ln \P� (CTP)
T, S (09 )

P� (CTP)
S, T (09 )+=ln \nT, S rt, s(09 )�HT

nS, T rs, t(09 )�HS+
=ln \nT, S �HT

nS, T�HS++ln \rt, s(09 )

rs, t(09 )+
=ln \nT, S �HT

nS, T�HS++ln _\e'T

e'S+\rt, s('� )
rs, t('� )+&

=('T&'S)+ln \nT, S rt, s('� )�HT

nS, Trs, t('� )�HS+
=('T&'S)+ln \P� (CTP$)

T, S ('� )
P� (CTP$)

S, T ('� )+
Comparing with Eq. (20), the components of y� 09 are the shifted (by 'T&'S)
counterparts of those of y� '� . It follows that the solution of the canonical set
of linear equations y� 09 =X%9 09 is the same as that for y� '� =X%9 '� , except that
the estimated log macrostate probabilities are shifted in the same way, i.e.,

ln 6� (CTP)
S (09 )&ln 6� (CTP)

T (09 )=('T&'S)+(ln 6� (CTP$)
S ('� )&ln Pi� (CTP$)

T ('� ))

which is equivalent to 6� (CTP)
S (09 ) B e&'S6� (CTP$)

S ('� ).
In other words, doing the bookkeeping in canonical scale via

bookkeeping step g3c for an importance-weighted simulation produces
exactly the same estimates as doing the bookkeeping in '� -scale via g3c$ and
then converting to canonical scale by Eq. (13). Note that the use of energy
in defining the macrostates leads to Eq. (22), which is crucial in proving
this result.

Finally, it is noted that the approach to solving the system of equa-
tions used in the Ising example, ordinary least squares, is easy to imple-
ment but is by no means optimal. Weighted least squares would give better
variance reduction, if the proper weights could be determined.

A.4. Primary Steps in the Variance Reduction Proof

Variance reduction at the microstate-level, Eq. (11), follows from
Markov chain theory.(11) The major steps of the proof are given here, with
more lengthy mathematical details relegated to later sections in this
appendix for those interested.
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Consider a fixed-length, importance-weighted simulation of a Markov
chain in equilibrium (i.e., simulating a prescribed number N of equilibrated
steps of the Metropolis algorithm). The limiting probability of microstate
s is ?s('� ); indeed, the Metropolis algorithm is explicitly designed to provide
this result. The recurrence time of state s is defined as the number of
Metropolis steps between consecutive visits to state s. It follows from
Markov chain theory that the mean +s of the recurrence time distribution
is simply the reciprocal of the limiting probability, i.e., +s=1�?s('� ).

When the length N of the equilibrated Markov chain is large, the
number of visits hs to state s is approximately normally distributed with
mean

E(hs)tN�+s

and variance

Var(hs)tN_2
s �+3

s

where _2
s denotes the variance of the recurrence time for state s and the

notation ``t'' means that the ratio of the two sides converges to 1 as
N � �. For the simulated Metropolis-based Markov chain, the above
reduces to E(hs)tN?s('� ) and Var(hs)tN_2

s ?3
s ('� ).

These results are the basis for determining system properties by the
standard histogram method, e.g., Eq. (12). To be sure, asymptotic theory
can't be applied indiscriminately (there exist Markov chains for which
recurrence times do not have finite expectation), but this is not an issue for
the systems of interest in this paper.

To obtain the variance inequality Var(c$s, t)�Var(hs, t) as per Eq. (11),
it is useful to consider the so-called expanded Markov chains for the transi-
tion and proposal processes, respectively. The (random) steps of the ran-
dom walk lead to some number of occurrences when state s is visited and
state t is proposed as the next move, that number being denoted as ns, t .
Similarly, there is some number of occurrences when state s is visited and
the next move is made to state t, that number being denoted as hs, t .

Each expanded Markov chain has states that are indexed by the
ordered pair (s, t). The state (s, t) in the expanded chain for the transition
process means that the system has just moved from state s to state t, while
the state (s, t) in the expanded chain for the proposal process means that
the system has just proposed a move from state s to state t. The first chain
corresponds to the ns, t process at the heart of the method described here,
while the second chain corresponds to the hs, t process at the heart of the
ETP method. The transition and proposal chains are related in the obvious
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way (it's not possible for the system to move from state s to state t{s
without such a move having been proposed), and this relationship between
the two expanded chains leads to the desired variance inequality.

Relative to the bookkeeping for the Metropolis algorithm, hs, t is
simply the number of visits that the expanded chain for the transition pro-
cess makes to state (s, t), while c$s, t=ns, t rs, t('� ), where ns, t is the number
of visits that the expanded chain for the proposal process makes to state
(s, t). From this characterization, large sample properties follow from
Markov chain theory. The corresponding expected values are

E(hs, t)tN?s('� ) qs, trs, t('� )

and

E(c$s, t)=E(ns, t , rs, t('� ))

=rs, t('� )[E(ns, t)]

trs, t('� )[N?s('� ) qs, t]

=N?s('� ) qs, t rs, t('� )

tE(hs, t)

which was noted earlier for the Boltzmann case. In other words, hs, t and
c$s, t are estimating the same quantity.

The variance reduction proof is based on a recurrence time argument.
Choose a pair of microstates s and t where, for the results to be meaning-
ful, it is assumed that s and t are such that

(a) qs, t>0 (otherwise, a one-step move from s to t can never be
proposed; then, both hs, t and ns, t are always zero) and

(b) rs, t('� )<1 (otherwise, the acceptance probability of a proposed
move to t from s is equal to 1, and proposing a move to t from s is the
same as moving to t from s; then, hs, t#ns, t).

Let {h denote the number of Metropolis steps between successive (s, t)
transitions and let {n denote the number of Metropolis steps between suc-
cessive (s, t) proposals. For E({h) and Var({h) denoting the mean and
variance of the recurrence time {h , for example, the asymptotic variance of
hs, t satisfies

Var(hs, t)=N Var({h)�[E({h)]3 (24)

338 Fitzgerald et al.



The steps in the proof of Eq. (11), with an explanation to follow:

Var(hs, t)=N Var({h)�[E({h)]3

=N Var({h) ?3
s('� ) q3

s, tr
3
s, t('� )

=r2
s, t('� )[N Var({n) ?3

s('� ) q3
s, t][rs, t('� ) Var({h)�Var({n)]

=r2
s, t('� )[Var(ns, t)]_[rs, t('� ) Var({h)�Var({n)]

=[Var(ns, trs, t('� ))]_[rs, t('� ) Var({h)�Var({n)]

=[Var(c$s, t)]_[rs, t('� ) Var({h)�Var({n)]

=Var(c$s, t)_rs, t('� ) _Var({n | O=t)+
1&rs, t('� )

rs, t('� )
Var({n | O=s)

+
1&rs, t('� )

r2
s, t('� )

[E({n | O=s)]2&<Var({n) (25)

=Var(c$s, t)__rs, t('� ) Var({n | O=t)+[1&rs, t('� )] Var({n | O=s)

+
1&rs, t('� )

rs, t('� )
[E({n | O=s)]2&<Var({n)

>Var(c$s, t)__rs, t('� ) Var({n | O=t)+[1&rs, t('� )] Var({n | O=s)

+
1&rs, t('� )

rs, t('� )
[r2

s, t('� )[E({n | O=t)&E({n | O=s)]]2&<Var({n)

(26)

=Var(c$s, t)_[rs, t('� ) Var({n | O=t)+[1&rs, t('� )] Var({n | O=s)

+rs, t('� )[1&rs, t('� )][E({n | O=t)&E({n | O=s)]2]�Var({n)

=Var(c$s, t) (27)

The second equation comes from the fact that the mean recurrence time for
a state in an irreducible chain is equal to the reciprocal of the limiting
probability for the state (the limiting probability for the hs, t chain is equal
to ?sqs, t rs, t('� )); the third through sixth equations are simply algebra to
isolate Var(c$s, t) from the rest; the seventh, Eq. (25), expresses the variance
of the recurrence time {h using a conditioning argument described later in
this appendix, where the notation O denotes the outcome of the proposed
move from s to t with acceptance probability rs, t('� )<1 (with ``O=s ''
denoting that the proposed move was rejected and ``O=t '' denoting that
the proposed move was accepted); the eighth is merely algebra; the ninth,
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Eq. (26), follows from an inequality derived later in this appendix; the
tenth is more algebra, and the eleventh, Eq. (27), expresses the variance of
the recurrence time {n using a conditioning argument described in the next
section.

The variance inequality Var(c$s, t)�Var(hs, t) for all distinct microstates
s and t implies that the building blocks of CTP estimators are uniformly
better than those of histogram methods. Extending the variance inequality
to the macrostate level is difficult because macrostate transitions do not
have Markovian behavior and dealing with the covariance structures(12, 13)

algebraically in this vein is difficult.

A.5. Derivation of Eq. (27)

For the ns, t chain, the variance Var({n) of {n is determined through a
conditioning relation common to the statistical literature. That is, the
variance of one random variable can be written(14) as the mean of the con-
ditional variance with respect to another random variable plus the variance
of the conditional mean.

Applying the conditioning relation to the recurrence time {n , where
the conditioning is based on the outcome O of the proposed transition
(which is equal to t if the proposed move is accepted and equal to s if not):

Var({n)=EO Var({n | O)+VarO E({n | O)

=rs, t('� ) Var({n | O=t)+[1&rs, t('� )] Var({n | O=s)

+rs, t('� )[E({n)&E({n | O=t)]2

+[1&rs, t('� )][E({n)&E({n | O=s)]2

=rs, t('� ) Var({n | O=t)+[1&rs, t('� )] Var({n | O=s)

+rs, t('� )[rs, t('� ) E({n | O=t)

+[1&rs, t('� )] E({n | O=s)&E({n | O=t)]2

+[1&rs, t('� )][rs, t('� ) E({n | O=t)

+[1&rs, t('� )] E({n | O=s)&E({n | O=s)]2

=rs, t('� ) Var({n | O=t)+[1&rs, t('� )] Var({n | O=s)

+rs, t('� )[[1&rs, t('� )]2 [E({n | O=s)&E({n | O=t)]]2

+[1&rs, t('� )][rs, t('� )]2 [E({n | O=t)&E({n | O=s)]]2

=rs, t('� ) Var({n | O=t)+[1&rs, t('� )] Var({n | O=s)

+rs, t('� )[1&rs, t('� )][E({n | O=t)&E({n | O=s)]2
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which is Eq. (27) in the previous section. To explain the above, the first
equation is simply the general variance decomposition; the second follows
from the probability that O=t equals rs, t('� ) and the probability that O=s
is [1&rs, t('� )]; the rest is algebra to condense the expression.

A.6. Derivation of Eq. (25)

Consider the hs, t chain, and let O� denote the outcome that the first i
proposed (s, t) moves are rejected and the (i+1)st proposed (s, t) move is
accepted (where i=0, 1, ...). Use of the conditioning on O� allows for coupling
the recurrence time {h with the recurrence time {n for the ns, t chain. Note
that the probability that O� =i follows a geometric distribution, and is
equal to rs, t('� )[1&rs, t('� )] i.

Two important mathematical identities to be used here are

:
�

i=1

i[1&rs, t('� )]i=[1&rs, t('� )]�r2
s, t('� )

and

:
�

i=1

i 2[1&rs, t('� )]i=[1&rs, t('� )][2&rs, t('� )]�r3
s, t('� )

These identities follow from the moments of the geometric distribution;
alternatively, they can be derived upon writing the expressions of interest
as sums of derivatives of individual terms with respect to the index i, and
then interchanging the order of summation and differentiation.

Using these identities and following the conditioning argument as in
the previous section gives the variance of the recurrence time {h for the hs, t

chain as

Var({h)=EO� Var({h | O� )+VarO� E({h | O� )

= :
�

i=0

rs, t('� )[1&rs, t('� )] i Var({h | O� =i)

+ :
�

i=0

rs, t('� )[1&rs, t('� )] i [E({h | O� =i)&E({h)]2

= :
�

i=0

rs, t('� )[1&rs, t('� )] i [Var({n | O=t)+i Var({n | O=s)]

+ :
�

i=0

rs, t('� )[1&rs, t('� )] i [E({n | O=t)+iE({n | O=s)&E({h)]2
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=Var({n | O=t)+
1&rs, t('� )

rs, t('� )
Var({n | O=s)

+ :
�

i=0

rs, t('� )[1&rs, t('� )] i _E({n | O=t)+iE({n | O=s)

&E({n | O=t)&
1&rs, t('� )

rs, t('� )
E({n | O=s)&

2

=Var({n | O=t)+
1&rs, t('� )

rs, t('� )
Var({n | O=s)

+[E({n | O=s)]2 :
�

i=0

rs, t('� )[1&rs, t('� )]i \i&
1&rs, t('� )

rs, t('� ) +
2

=Var({n | O=t)+
1&rs, t('� )

rs, t('� )
Var({n | O=s)

+
1&rs, t('� )

r2
s, t('� )

[E({n | O=s)]2

which is Eq. (25). The first equality above follows from the conditioning
argument; the second from use of the geometric distribution for O� ; the
third from the relation between the outcomes O� and O of the previous
section; and rest from the aforementioned mathematical identities.

A.7. Derivation of Eq. (26)

To show Eq. (26), two results regarding passage times for simulated
system are required. The first is that the expected passage time E(s � t, no
return to s) from state s to state t, given that no intervening return to state
s has occurred, is equal to the passage time E(t � s, no return to t). This
result is a consequence of the detailed balance (sometimes called time
reversibility), in that each path containing events [s � t, no return to s]
has the same equilibrated probability as the reversed path containing
events [t � s, no return to t].

The second result, perhaps less intuitive, is that the expectation
E(s � t) of the number of Metropolis steps needed to move from state s to
state t for the system is equal to E(t � s) of the number of steps needed
to move from t to s. This follows from properties of first passage times.
Letting t fts denote the probability of going from t to s without a return
to t, we have(11)

t fts= s fst(?s �?t)
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Using this relation and the properties of the geometric distribution as
per the previous section,

E(t � s)= :
�

i=0
t fts[1& t fts]

i [E(t � s, no return to t)

+iE(t � t, no visit to s)]

=E(t � s, no return to t)+ t ftsE(t � t, no visit to s) :
�

i=0

i[1& t fts]
i

=E(t � s, no return to t)+ t ftsE(t � t, no visit to s)
[1& t fts]

[ t fts]
2

=E(t � s, no return to t)+
[1& t fts]

t fts
E(t � t, no visit to s)

=E(t � s, no return to t)+
[1& t fts]

t fts

1
?t[1& t fts]

=E(t � s, no return to t)+
1

?t t fts

=E(s � t, no return to s)+
1

?t s fst(?s�?t)

=E(s � t, no return to s)+
1

?s s fst

=E(s � t) (28)

where the final equality follows upon reversing the order of the first five
equations with the roles of s and t exchanged.

Showing Eq. (26),

[E({n | O=s)]2>r2
s, t[E({n | O=t)&E({n | O=s)]2

is equivalent to showing

rs, t[E({n | O=t)&E({n | O=s)]<[E({n | O=s)] (29)

As noted, this equation is valid only when the proposal probability qs, t>0
(so that the event O makes sense) and rs, t('� )<1 (so that E({n | O=s)
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makes sense). The steps in the derivation of Eq. (29), with an explanation
to follow:

rs, t[E({n | O=t)&E({n | O=s)]

=rs, tE(t � s)

=rs, tE(s � t)

<rs, tE(s � t, last step is from s)

=rs, t :
�

i=1

rs, t('� )[1&rs, t('� )] i&1 iE({n | O=s)

=
rs, t('� )2

[1&rs, t('� )]
E({n | O=s) :

�

i=1

i[1&rs, t('� )] i

=E({n | O=s)

The first equality follows because the number of Metropolis steps required
to reach an (s, t) proposed move starting from state t can be decomposed
into

v the number of Metropolis steps required to first reach state s when
starting from state t, and

v the number of Metropolis steps required to first propose an (s, t)
move when starting in state s.

The latter event has distribution identical to [{n | O=s], and thus the term
E({n | O=t)&E({n | O=s) in Eq. (29) is simply equal to the expected
number of steps for the simulated chain to move from state t to state s,
written E(t � s). The second equation is simply Eq. (28). The third equa-
tion follows because the chain moves from s to t at least as fast as it moves
from s to t with the last step being directly from s; this is because there
exists a path from s to t that doesn't involve the final step being from s
(otherwise, the proposal probabilities satisfy qu, t=0 for all u{s, implying
by symmetry that qt, u=0 for all u{s, implying that qt, s=qs, t=1, implying
that the chain is not irreducible and aperiodic). The fourth equation follows
upon conditioning on the number i of (s, t) moves that are proposed before
the one-step transition from s to t occurs, and the rest is algebra.
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